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A METHOD OF COMPUTING THE TRANSIENT TEMPERATURE OF THICK WALLS FROM
ARBITRARY VARIATION OF ADIABATIC-WALL TEMI?ERATURE AND

HEAT-TRANSFER COEFFICIENT ‘

By P. R.&L

SUMMARY

A method of calcul.a%g the temperature of thick wal.b Ium
been developedin which are used relatively new concepts, such
a.9tl~etime series and the response to a unif tri47r@evaridion
of surjaa temperature, together with essentidy standard
jorrnuh jor trami.ent tipertiure and hem! tiw into thick
walls, The method can be wed without kncd..edge oj the
mathematical tools of ii% development. 17w method ti partic-
uhrly suitabk jor detmnini~ the wail tiperaiure in one;
dimensional thernud problems in. awonauiti where there is a
continu.ow variu$ion oj the heut-tran.sjer Coew and
adiubai%udl temperature. The method &o o$ers a con-
venient meaw for solving the inver8e problem of determining
the heal-j?owhistory when tanperaiure htitmy ix knm.

A sti oj diversijed problems were solvedlby ezz.ctanulyti
as weU m by the new method. A comparison oj the resuh
8hows the new &d to be accurti. The labor involved ti
ve~ mod.wt in consideration oj the ruu$ureoj the thick-wall
temperature problem. Limiti~ solutiom jor the %njinitely
thick” waU and jor walk 80 thin that th-erma.llag can be
negleded were alao obtained.

INTRODUCTION

In aeronautical applications, external surfaces are heated
by the impact and friction of the air. Eor cas~ in which
the structural temperatures never reach equilibrium, the
transient temperatures of the surfaces often govern the
design; and it is necessary to be able to predict these tm-
pemtures.

Literature on transient temperatures in thick walls dates
from the classical works of Fourier. Perhaps the most ex-
tensive work on the subject is given in reference 1. Most
literature giving the solution to the transient temperatures
in thick walls is based on the premise that the temperature
history of one or more principal surfaces is known or given.
Only a limited amount of literature is available relative to
transient temperatures in thick walls under the influence of
forecd convection. The forced-convection equation for
heat transfer in aeronautical applications is q=h(Z’am– T),
which states that the rate of heating q is prcportiomd to
tho difference between the adiabatic-wall temperature T=w

1Suxiwdes NAOA TechnIad Note 4106by P. R HUlj 1957.

and the wall temperature T. The coefficient of propor-
tionality is the heat-transfer coefficient h. In the classical
problem of the convection heating of a thick wall, h has
been assumed to be constant. In the usual aeronautical
application, the fact that h varies with time is the source of
the dii3iculty in obtaining a solution.

The thick-wall case treated in tb.ispaper is the one gcv-
erned by Fourier’s classicsJpartial differential equation

In the case governed by this equation, the wall is composed
of a homogeneous material and the temperature gradients
and heat flow parallel to the surface are negligible. In one
boundary relation for this case, the convective heat rate is
equated to the heat absorbed by the V@ or to the product
of the conductive@ and the temperature gradient in the wall
at the heated surface; that is,

Since h ooeura as a product with Tin this boundary equation,
the usual procedures of operational calculus do not apply.
When solutions for the temperatures of thick walls have
been necewry in aeronautical work, the method generally
used has been to divide the thick wall into a number of
slabs in order to make a step-by+tep numerical integration
of Fourier’s equation of heat flow. Since steps in both
distance and time must be taken, the procedure is tedious
and time consuming unless the use of a high-speed auto-
matic computing machine is resorted to. If it is necessary
to do the work without the use of such equipment, a method
introduced by Schmidt (ref. 2)wherein some of the calcu-
lations are accomplished graphically may be used to reduce
the labor to some extent. This method is known as the
Schmidt plot method.

In the present paper a simple method is developed for the
calc~ation of the temperature history of the surfaces of a
thick wall or of any plane within the wall. The procedure
is to select from a table a set of coefficients which depend
on the physical properties of the wall. These coefficients
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and other data rho substituted into explicit algebraic for-
mulas to determine the temperature of the heated wall
surface. If the heat-transfer coetlicionts are known, no
guess or iteration procedure is required. As can be seen by
the results of the example problems presented, the accuracy
can be as good as is desired. For equal time-step sizes, the
method is more accurate than more laborious numerical
methods.

The simplicity of the results depends on two factors:
One is the suppression of the variable z representing the
distance into the wall by using an integrated form of Fourier’s
equation and assigning a value of x corresponding to the.
heated surface. The other is a mathematical device known
as the time series introduced by Tustin (ref. 3). The time
series is defined in appendix A. Reference 3 also introduced
various manipulations of the series. The multiplication of
two series is an important manipulation by means of which
specfic results can be generalized. Other writers (ref. 4,
for example) have also presented various manipulations of
the series.

The present paper is divided into two parts, analysis and
application. The section on analysis includes a treatment
of the determination of the temperature history for the
special cases of the thermally thin wall and the irdinitely
thick wall as well as for the wall of intermediate thickness.
The inverse problem of determining the heat flow correspond-
ing to a known temperature history is also discussed. Al-
though the method was set up for the purpose of predicting
wall temperatures in engineering applications, it has also
been found to be suitable for research applications wherein
the transient skin temperature is measured and the heat-flow
and bent-transfer-coe5cient histories are deduced. Appen-
dk A gives background material pertaining to the use of time
series that may be an aid to 8 study of the analysis. Ap-
pendk B gives a summary of analytical temperature and
heat-flow formulas used either as a basis of analysis or used
in the solution of examples to test the accuracy of the present
method. In the section on application the computing
formulas are reviewed ~d several examples of their use are
given. Because of the explicit nature of the temperature
formulas, it is not necessary to study the analysis to use the
results.
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any function c0rre9ponding to reference slope

y= (1/6)t
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heat-trsmfer coefficient at z=O, Btu/(hr) (sq ft)
(°F)

heat-transfer coefficient at z=l, Btu/(hr) (sq ft)
(“F)

heat-transfer number, hS#/16Q
heat-trausfer number for @iinitely thick wall,

3hw/8K .
MlusiviQ, K/cp, sq ft/hr
conductivity, (J3tu)(ft)/(hr) (sq ft) (“F)
wall thickness, ft
memory coeiiicients, dimensionless
term designating time in multiples of basic inter-

val 8
term number in in6nite series
instantaneous heat-transfer rate due to uniform

temperature rise of heated wall surface of 10

in time & Btu/(hr) (sq ffi)
average heat-transfer rate from time (m—1)6 to

ma due to uniform temperature rise of heated
wall surface of 1° in time 6, Btu/(hr) (sq ft)

heat-transfer rate corresponding to unit triangle
variation of surface temperature

average heat-transfer rate from time (m—1)6to
& due to unit triangle reference temperature
variation of hated-wall surface, Btu/(hr) (sq ft)

heat-flow history at hated surface due to unit
temperature step of heated surface

radiation rate, Btu/(hr) (sq f t)
radiation term, r&#/16Q,“F
radiation term for infinitely thick wall, 3R@@<j

“F
time, hr
heated-wall-surface’ temperature, ‘F
value of step in mdkmrface temperature, “F
adiabatic-wall temperature or effective boundmy-

layer temperature, ‘F
temperature of inside (unheated) surface or of any

plane within wall, “F
temperature response to unit step in T.., ‘1?
distance through wall, ft
ordinate of control line or altitude of triangle
positive roots of auxiliary equation in analytical

solution of wall temperature
basic time interval in time series
ratio of heat-transfer coefficient at cower wall

surface to heat-transfer coefficient at heated
wall surface

di%erence in temperature between heated surface
and any other plane due to unit triangle varia-
tion of heated surface, ‘F

difference in temperature between heated surface
and any other plane due to uniform referenco-
temperature rise of 1° in time 8, “F

weight densi~, lb/cu ft
dummy time variable, hr

Subscript or superscript:
m index denoting term number

A dot over a symbol denotes the derivative with respect
to time.
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ANALYSIS

TEMPERATURES ON OUTSIDE SURFACE

The wall considered in this paper is composed of a homo-
geneous material, and the temperature gradients and heat
flow parallel to the surface are negligible. The transient
temperatures of the heated or outside surface of the wall
are determined by means of Fourier’s equation which governs
the heat flow through the wall:

bT_k @T
5– W

“(1)

The wall properties expressed by the d.iilusivity k are con-
stant. The boundary conditions are given by the state-
ments that the flow of heat at the unheated face of the wall
(where z is taken,as zero) is zero, that is,

(2)

and that the heat transferred to the heated face is given by
the relation

h(Taw—~=K(aT/Z@.. , (3)

For convenience, the initial temperature is taken as zero at
zero time:

T=O (t=o) (4)

Since both h and Tare functions of t and occur as a product
in equation (3), the transform procedures of operational
calculus do not apply. The problem may be stated in
another form by means of an integral equation expressing
the heat balance at the heated surface.

Let g,(t) be the heat-flow history at the heated w-allsurface
at x=1 due to a unit step in that wall-surface temperature
at t= O. Then the heat flow q(t)due to a temperature
history T(t) of the heated surface that is continuous and is
zero when t= O, but is otherwise an arbitrary variation, can
be expressed by Duhamel’s integral in the form indicated in

the following equation, 5!’represents$ T(t) and T is a dummy

time variable:

(5)g($ =J; T(+7) qs(7)d7

A heat balance is formed at x=1 by equating the integral in
equation (5) to the left member of ‘the boundmy condition
expressed by equation (3):

J
t.

h(T&T)= T(t–r) g,(~)d~ (6)
o

The determination of T from equation (6) establishes the
solution.

The wall temperature T is determined, in general, from
equation (6) for thermally thin, thick, and infinitely thick
wrdls. The method first discussed is based on thick wwlls,
and modifications of this method are introduced for the
special cases of thermally thin and infinitely thick walls.

SOLUTION FOE THEEMAIX.Y THICK WALIX

In the calculation of wall temperature TTime series.—
G~oGfJ7_13~s

for thick walls, the right-hand member of equation (6) is re-
placed by the product of two time series. As explained in
detail in appendix A, a time series is the value (here the
Ordinate) of a function of time at successive equal incre-
ments of time & Thus, any variation of wall surface tem-
perature can be expressed as the series

T= 1’1, Tz, T3,”. . . T~ (7]

When a wall surface has a unit tiangle variation of surface
temperature, the surface temperature increases horn 0° at a
constant rate ti a value of 1° at the time t=tiand decreases
at a constant rate to the value 0° at t=2& The heat flow
corresponding to a unit triangle variation of surface tem-
perature can be expressed by the series

f.fA=qA, 11~A,2j ~A,3, . . . ~A,m (8)

The product of equations (7) and (8) gives the instan-
taneous values of heat flow due to the temperature varia-
tion given by equation (7) and could be used to eliminate
the integral in equation (6). However, a slight variation
or refinement of the method is introduced which has been
found to increase the accuracy of the results without in-
creasing the labor involved.

If m represents the term number of a time series, the prod-
uct ma represents the corresponding time. The retirement
consists in averaging the heat flow from the tinw (m—1)6 to
the time m& Let ~.,= represent the average heat flow over
this interval due to a triangular variation in surface tempera-
ture. Then the heat-flow history due to the triangular
temperature variation can be repr~ented by the series

where ~~~is the average for the time Oto 6,~A,2 is the average
for time 6 to 26,and so forth.

The heat-flow history exprewed as the average heat flow
over successive increments 3, but due to the temperature
variation (7),is given by. the product of equations (7)
and (9):

~= (Tl, Tt,Ta,. . . Tm)(~A, I, GA.2, ii,a, . . . kA,m) (lo)

Such a multiplication actually gives the rwdt by forming
the proper superpositions, as demonstrated in appendix A.

In order to adjust the boundary condition expressed by
equation (3) or the left-hand side of equation (6) to represent
an average flow of heat ijmover the interval 6, the average
flow of heat from the boundary layer is approximated by
the mean of the values at the beginning and end of the in-
terval. Thus, for the interval ending at t=m.~, & has the
value

Z.=;[L(T..–+h+l(TaT~.–~.-J (11)

If radiation is important to the problem, it may be in-
cluded. Let rmbe the rate of heat radiation per unit area
at the time mti Equation (11) may then be written
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TiWh or without radiation, the heating history, or varia-
tion of ~, may be expressed by the series

wherein each term has the value given by equation (11)or
(ha). Equating the average heat flow given by equation
(12)to that given by equation (10)yields

; [h,(Tam—T)l+h(~aw-~o]=~lzA,l

ii, 121ZS, . . . iim= (Tl, T2,Ta, . . .

(13)

In order to evaluate equation (13), the product in the
right-hand member is expanded by algebraic multiplication
and values of both members of the equation pertaining to
equal time ‘are equated. The following set of equations
results (for simplicity, the radiation terms arenot written in):

Eguations (14)can be rearranged to obtain the equivalent equations for z

T1=hlTaWl+hoT=W.o
2~L.,+h~

T2=bT.w.%+h, T.m.,–hlTl–2T&t .
2GA.l+7h

. . . . . . . . . . . . . . . . . . . . . . . . . .

—h~m-l—2@A.zT~-l+~LaT.zs+ . . . +-A,mTJT== (hTa.).i4hTam
2ij4,1+~ ‘I

The valuea of @A.. must be derived.
Average heat flow due to unit triangle variation of surface

temperature.-In order to obtain the average heat flow due
to a unit triangle variation of surface temperature, the
average heat-flow rate ijmdue to a uniform increase in the
surface temperature of. 10 in each unit time 6 must be
obtained. The average is taken over the time 6 by inte-
grating the instantaneous heat-flow rate from t= (m.-l)~to
t=m~ and dividing by & This determination is carried out
in appendix B. The result is

In equation (16),Am and Am_l are the summations

(16)

(17)

and Q is the heat capacity of the wall per sqmu-efoot per’~
and is the product of weight density, specific heat, and wall
thickness:

Q=pcl (18)

The average htit flow due to a unit tria”~le variation of
surface temperature ~4~ is obtained by the superposition of

(14)

(16)

the heat flows ~ due to three linear variations of wall tem-
perature as follows (for further details, see the development
of equation (Al) in appendix A):

Expanding equation (19)by~substituting for i& from oqun-
tion (16)gives

%K~A..=d )(;+Am-& –2 ):+A._Am_2+

($
)1

+A=_~–4_3 (20)

Substituting in equation (2o) successive valuea of m, starting
with m= 1, ignoring any parenthetical group in which nega-
tive subscripts appear, and collecting terms result in tho
following equations:

&,=>~(;+A,-Ao)

-(
8Q *

5A.2=~6 –~+fi2-8AI+ZAo
)

lA,3=~ (&-SA2+SAI-&)

. . . . . . . . .. . . . . . . . . . .

=@ (Am–SA=_I+8Am_2–.dm_3)~A,m g8

. (21)
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For convenience, the quantities in parentheses can be tabu-
lated. The quantities in parentheses usually retain sig-
nihant values after the completion of the temperature
triangle which created them. For this reason, in accordwme
with the notation of reference 4, they are called memory
terms and me designated by the symbol M. With this

(21a)

Hence, the following equations for memory terms are

established:

.
M, =;+A1–&

M, –––:+A2–3A,+2A4

lM~=A3—3A2+3A1-A

. . . . . . . . . . . . . . .

iki==An-3An-,+3Am-z-A._s .

(22)

Obviously, the values of JMare combinations of the values
of A. Values of A and lM were computed for a range of
values of kblf?, and the memory coefficients M are listed in
table I. The’ value of M de~reases with increasing term
number and sooner or later further terms can be neglected.

Resulting temperature formulas.—Equations (21a) give
the value ~f ~b,~-sought to complete equations (15); theref-
ore, equations (21a) are substituted into equations (15).

The result can be simplified by dividing through by 16@r% and letting

(23)

If radiation is important, the appropriate terme are included ~y ‘using equatioq (ha) rather than equation (11). Since
equations (15) are being divided through by 16(71n%,.the radiation term R is deiined as

(r)‘= 1;
z%

(24)

With the substitutions of equations (23) and (24) in equations (15), the final results, including terms for ridiation, are

T3=H3T=W,2+ (HT.W–H~2–l~2T2 –lV3T1–R3–&
M,+E3

SOLUTION FOE INFINITELY THICK WALLS

General considerations.—If a wall is thermally very thick
and is heated rapidly so that the unheated side experiences
little heating, it is convenient and accurate to wsume that
the wall is infinitely thick. The same formulas, equations
(25), are used to compute the wall surface temperature.
However, instead of the valuea of M for a particular wall
or diffusion number, the values of M which are used are
always a fied set of numbers which are now derived. The
values of H and R are also changed.

(j5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tm= @TmA+ (HT.. —HT)m-r1M2Tm-1—M8T=_2— . . . —LMmT1—Rm—R=.l
Ml+Hm J

Determination of average heat flow due to unit triangle
variation of surfaoe temperature.-The determination of the
heat flow due to a unit triangle variation of surface temper-
ature of an infinitely thick wall depends upon the instrmta-
neous heat flow into the surface due to a unit rise in surface
temperature in unit time. From page 110 of reference 5,
the instantaneous heat flow is equivalent to 2Klfi/@
Since the he&flow rate is proportional to the surface-
temperature slope, the instantaneous heat transfer due to
unit rise of surface temperature in the time 6 is !2K3kJ&@
This expression is integrated with respect to t between the
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TABLE 1.—VALUE8

AERONAUTICS882

OF MANDO

lkw

\

(I

m
0.01 0.02 0.05 0.1 - 0.2 0.5 1.0 20 6.0

M

1.16145420
-1.06920821
– .08224564
– .00000036
– .00000000

0.4149s535
– .07836507
– .14861561
–.07338883
–.04463344
–.02724662
–.01663399
–.01015501
–.00619962
–.00378485

0.09280547
–.01592290
–.02683275
–.00957529
–.00553399
–.00373390
–.00274116
–.00212390
–.00170890
–.00141412
–.00119015

0.13124675
–.02251838
–.03794724
–.o1354153
–.00782683
–.00528487
–.00389296
–.00304409
–.00249270
–.00211864

0.20751933
–.03560496
–.06002646
–.02166582
–.01320029
–.00983261
–.00809228
–.00695594
–.00608368
–.00535620

0.29347652
–.05051887
–.08722820
–.03696546
–.02628367
– .02025561
–.01579610
–.01233887
– .00964054
–.00763264

D.64728198
-.22817155
-.30052454
-.08405219
-.02447704
-.00712803
-.00207577
-.00060449
-.00017604
-.00005126

0.85683719
-.51142924
-.31662013
-.02634648
-.00223431
-.00018948
-.00001607
-.00000136
-.00000012
-.00000001
-.00000000

1.02964117
-.82682869
-.20127599
-.00142616
-.00001026
-.00000007
-.00000000

–.00185533
–.00166301
–.00151702
–.00140175
–.00130717
–.00122687
–.00115666
–.00109383
–.00103658

–.00472749
–.00417648
–.00369098
–.00326234
–.00288362
–.00264891
–.00225306
–.00199166
–.00176041
–.00155609
–.00137549
–.00121584
–.00107473
– -00094999
–.00083973
–.00074227
–.00065612
–.00057997

–.00588550
–.IX1459860
–.00359308
–.00280743
–.00219357
–.00171393
–.00133917
– .00104635

–.00231065
–.00141064
–.00086120
–.00052576
–.00032097
–.00019595
–.00011963
–.00007303

-.00001493
-.00000435
-.00000L27
-.00000037
-.00000011
-.00000003
-.00000001
-.00000000

–.00103005
–.00090058
–.00079788
–.00071529
–.00064810
–.00059290
–.00054712
–.00050883 –.00081756

–.00063880
–.00049912
–.00038998
–.00030471
–.00023808
–.00018603
–.00014535
–.00011357
–.00008874

–.00004459
–.00002722
–.00001662
–.00001015
–.00000619
–.00000378
–.00000231
-.00000141
–.00000086

—.0004765f
–.00044899
–.00042532
–.00040477
–.00038676
–.00037081
–.00035655
–.00034368
–.00033196

–.00098373
–.00093448
–.00088827
–.00084473
-.00080356
–.00076455
–.00072753
–.00069237
–.00065895

21
22
23
24
26
26

E –.00000053
–.00000032
–.00000020

29
30

–.00032119
–.00031121

–.00062716
–.00059693

–.00051265
–.00045315

–.00006933
–.00005417

o

0.92596579
–.31355030
–.23787104
–.14587796
–.08906696
–.05437468
–.03319564
-.02026587
–.01237227
–.00755325
–.00461124
–.00281516
–.00171865.
–.00104923
–.00064055
–.00039106
–.00023874
–..00014575
–.00008898
–.00005432
–.WIO03316
–.00002025
–.00001236
–.00000755
–.00000461
–.00000281

0.09099065
–.09999900
–.00000045
–.00000000

0.99999992
–.00019241
–.00333067
–.01195026
–.02167828
–.02904775
-.03361673
–.03599626
–.03687746
–.03679326
–.03611078
–.03507183
– .03383230
–.03249148
–.03111189
– .02973243
–.02S7687
–.02705931
–.02578769

0.99956262
-.02166158
-.06963676
-.09012904
–.08988006
-.08284990
–.07435643
–.06609621
– -05864671
–.05179171
–.04579381

0.45623866
-.41618829
-.03665380
-.00310842
-.00026361
-.00002236
-.00000190
-.00000016
-.00000001
-.00000000

0.24814441
–.24630216
–.00182900
–.00001315
–.00000009
–.00000000

1.00000000
–.00000015
–.00002494
–.00033480
– .00144190
–.00344276
–.00595602
–.00854573
–.01092637
–.01296010
–.01461453
–.01590636

0.98873183
–.12553206
–.17636953
–.14882949
-.11749067
-.09193126
-.07184409
– .05613647
–.04386205
–.03427135
–.02677771

0.69945453
-.48643195
-.15098748
-.04396967
-.01280454
-.00372885
-.00108689
-.00031622
-.00009209
-.00002682

s
1:
11
12

-.00000781
-.00000227
-.00000066
-.00000019
-.00000006
-.00000002
-.00000000

–.04048318
–.03578699
–.03163302
–.02796174
–.02471645
–.02184779
–.01931206
–.01707064

–.02092260
–.01634774
–.01277320
–.00998026
–.00779802
–.00609293
–.00476067
–.00371972

–.01687671
–.01757370
– .01804423
–.01833036
–.01846823
–.01848809
–.01841484
–.01826874
–.01806620
–.01782042
–.01754197
–.01723931
–.01691918
–.01658695
–.01624686

– .02456607
–.02339609
–.02227782
–.02121043
–.02019264
–.01922244
–.01829828
–.01741811

–.01508936
–.01333804
–.01178998
–.01042159
–.00921203
–.00814285
–.00719776
–.00636236

–.00290638
–.00227088
–.00177434
–.00138637
–.00108323
–.00084638
–.00066131
–.00051671

21

–.00000172
–.00000105
–.00000004
–-00000039

–.01590229
–.01555588
–.01620972

–.01658000
–.01578203
–.01502236

–.00562392
–.00497119
–.00439422

–.00040373
–.00031545
–.0002464830

‘For additionalvalueofki@, seetableII.

limits (m,-1)~ and m& Dividing by ~ gives, for the I Slope fmction tothatoftheuit trirm.gleinput functionis
average hea&flow rate ~n over the interval 6 terminating -

--
-accomplished by substituting equation (26) into equation

at m~, (19):

_= [#_(~._l)q-— (26)
‘“ 3,Lm

~A,m=~ [~%_3(~–1)%+3(~–2) %–(~–3)%]
3JIi

The usual superposition required to change theresult of the (27)
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Resulting temperature formulas,-If the bracketed quan-
tity in equation (27) is designated as the memory coefficient
L&, then

ilZm=[mJ~-3(m-l) ~$+3(nZ-2)~-(m-3)~ (28)

A dimensionless heat-transfer coefficient (suggested by iq.
(27)) k defined as

\

Hm-3h8Y

and n corresponding term for radiation

(29)

isdefined as

(30)

The substitution of equation (27) into equations (15) again
results in equations (25). Hence, equations (25) are used to
obtain the heated-surface temperature of the infinitely thick
wall as well as of walls of intermediate thiclm=, except
tlmt M, H, and R for infinitely thick walls are defined by
equations (28) to (30). Inspection of equations (28) to
(30) indicates that the wall material properties and time-step
size are eqmssed by equations (29) and (30), while the mem-
ory terms are invariant with wall properties or step size.
Substituting successive integem for m from 1 to 20 into
equation (28) gives the following corresponding values of M:

M,=l.o M*=-0.022885 M,5=–0.007580

MZ=-0.171573 ‘ kf,=-O.018412 M,,=-O.006807

M8=-0.289129 M10=-0.015232 ik~l,=–0.006157

M, = –0.103176 .&= –0.012874 kf,s= –0.005605

M,= –0.059630 Mu= –0.011069 M1g=-O.005130

I&= –0.040234 .i&= –0.009650 Mm= –0.004719

Al,= –0.029536 M,,= -O.008511 1
(31)

These values of M, along with values of H. and R. from
equations (29) and (30), can be used in all problems wherein
the wall is so thick relative to the heating rates and times
involved that the wall behaves as though it were iniin.itely
thick.

THIN WALLS

When a wall is thermally thin, the temperature drop
through the wall becomes negligible and the problem is
simplified by assuming that all interior temperatures are
equal to the surface temperature. The heat absorbed by
the wall during any time interval 6 must be equal to the
gain in enthalpy or total heat during this time. Hence,

~m=; (@mTzrQra.,Tm-J (32)

Equating the average rate of gain in enthalpy as given by
equation (32) to the average rate of heat transfer through
the boundary layer aa given by equation (1la) results in

the following heat balance:

&(Taw–~m–rm+hm., (T.m–nm-,–

h-l=; [(GT).– (WL-,] (33)

(34)

Any variation of Q with temperature is accounted for by
equations (34). If the wall properties do not change over
the temperature range covered, obviously, Q is a constant.
If (7 is considered to be constant, equations (34) can be
derived from equations (25) as follows: As the diffusion
number k6/libecomes large, all values of A approach the
value #/8, and from equations (22) it is seen that the only
memory terms not identically equal to zero are MI and J1q,
which have the valug #/8 and —i?/8. Eliminating M from
equations (25) and utilizing definitions (23) and (24) yield
equations (34).

In equations (34) the terms ho, TaW,O,and To have been
retained since in the thin-wall problem, unlike the thick-wall
problem, it is convenient for To to have any value. These
equations have considerable advantage because the need
for temperature extrapolation is reduced, if not eliminated.
The equations tend to give accurate results and, as is shown
subsequently, are suitable for the use of relatively large time
increments.

INSIDE TEM-PERATURES

If the heated wall surface is called the outside surface,
the temperatures at other parallel planes may be called
inside temperatures. In particular, this paper is concerned
with the inside surface temperature. According to the
notation used in this paper, the inside surface is desiegmted
by x/1= O,the outside surface by xJl= 1, and other planes by
values of x11between Oand 1.

Consider a wall, initially at zero temperature, which has
the heated surface x=2 raised at a reference temperature
slope T= (1/6)t, while the surface z= O is insulated. The
d.iiferencein temperature 19,betvveen the heated surface rmd
any plane x is show-nby equation (B11) of appendix B to be

{
,,=$: > :;-; cm[(2n-l);;]-

~ (–1)=-1
.=, (M–1)’ c0s[(2n-lEle-(h-1)’;; ’35)}
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A set of terms is defined to represent the summations in
equation (35):

130=$ &$ :;yl;: Cos[(2n–1) ; ;]
n=

B1=M E 5 (–1)’-’
[ 1+’ h.., (2rL-1)3co’ ‘2n-1)H ‘-m-’)’;+’

1619 ~ (—1)=-1

[ 1

–2@n-l)sg8

1

(36a)
x (2n-1)~ f e‘2=7 ~n=, (2~,.-l)o Cos

. . . . . . . . . . . . . . . . . . . . . . . . . . .

B~_16 ~’ ~ (–1)’-1
[ 1

—m%—l)*$&3

7? hn=l (272–1)3
cos (2n—l)~f e.

If the temperature ditTerenceacross the entire -wallis sought,
then x/i=O and equations (36a) become

. . . . . . . . . . . . .

(36b)

Regardless of whether equations (36a) or (36b) are used,
equation (35) may be written

O,=i%—l?= (37) .

By the usual superposition, in order to change the result
of the referenca slope function to that of a unit triangular
input function, the temperature difference between the plane
‘of the heated wall and the plane being considered is

o= BO—B.—2(BO—Bm-J+BO—Bm-a (38)

Assigning integral values to m and simplifying give
equations corresponding to successive values of time:

O1=—B1+BO
02= —B2+2BI— BO
63= —Ba+2Bz— B1
84= ‘&+2&-& ..
. . . . . . . . . . .
0.= —B.+21?m_~-l&

the

(39)

.A sticient number of values of o for practical purposes are
given in table I. According to equations (39), the tem-
perature difference between the plane of the heated surface
and any other plane due to a unit triangle temperature

variation of the heated surface would be given by the time
series 0t=L91,Oi,03, . . . 8n. In addition, any general tem-
perature of the heated surface can be represented as 2= Tl,
TX, T3, . . . T=. The temperature difference due to this
general temperature variation is obtained by formally
multiplying these two time series, and the inside temperature
is obtained by subtracting the product horn the hented-
surfac.etemperature T. Hence

T~l=T1–e, T1
Ti,= T,– (C9,T2+02T,)
T.,= T3– (&T~+82Ta+03TJ ‘1 (40)
. . . . . . . . . . . . . . . . . .
Tt== T=— (o,T~+o,T~_, + . . . +o~TJ

Computation of TLmdoes not depend on prior computat,iol~
of TL,, T&z,and so forth.

II the temperature distribution through the wall is required
in a form which is analytical with respect to x and can bo
d.itlerentiqted or integrated analytically with respect to z,
the procedures outlined in appench C should be followed.

CALCULATION OF HEAT FLOW FROM TEMPERATURE
HISTORY

TEMPERATUREHISTOIIYOF OUTSIDE SURFACE ENOWN

If the heatedarface temperature history is known, the
heat-flow history can be determined by substituting equn-
tions (21a) into equation (10) as follows:

~=>; (Tl, Tz,T3, . . . TmJ(M,, fMz,M3, . . . Mm) (41)

Multiplication shows that the mth term is given by

The heat-flow history can be determined readily from a given
temperature history of the heated surface by means of
equation (42). The average heat flow over a small interval 3
can be assumed to give the instantaneous mte ot the center
of the interval.

TEMPERATURE HISTORY OF INSIDE SURFACE KNOWN

If the temperature history of the outer surface or of n
plane near the outer surface is known, the feasibility of
accurately determining the heat flow is excellent. If the
temperature history of the inside surface for a themmlly
thin wall (kt/P large and hJ/Ksmall) is known, it is dso

feasible to determine the historv of the heat flow into tho
outer surface. However, if th~ wall is thermrdly thiok,
relatively small changea in temperatures at the inside surface
may make it difiicult to reconstruct the temperature history
and heat flow at the outer surface.

A rearrangement of equations (40) may be used to deter-
mine the outside-surface-temperature history from tho
inside-surface-temperature history. Rearranging equations
(40)give9
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T, =~
1—0,

T~~+osT,
T3= i_O,

T~= T~.8+62Tz+O~T1
1—81

. . . . . . . . . . . . . . . .

Tm=Tt,m+02Tm-1+03Tm-2+ ..- + o.T,
1–81 ,.
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(43)

Tlm rate of heat flow at any time is+then determined from
equation (42).

APPLICATION

GENERALCONSIDERATIONS

The section on application is devoted to demonstrating
the solution of two types of problems: In the fit type the
heat-transfer coefficient and adiabatic-wall-temperature
histories are given and the Iwalf-temperature solutions are
obtained. In the second type the temperature history is
known and the heating-rate history is computed. In each
exrunple, the problem chosen was a special case, selected so
that its solution could be and was obtained by an exact
analytical method. The degree of exactness of the present
method is demonstrated by comparing each result with the
solution calculated by exact theory.

With one exception, radiation was a negligible considera-
tion in the examples given. Although the method presented
is well suited to accounting for radiation and includes terms
for that purpose, radiation was neglected in al cases to make
possible an exact analytical solution for comparison.

EQUATIONS FOR HEATED SURFACE

If the temperature of the heated surface of the wall is
required, equations (18) and (23),to (25) are used. Whether
the objective is to compute wall temperature or to compute
the heat flow from a known wall temperature, the first steps
involve the determination of the required memory coeiii-
cients. In order to minimize the labor involved, the recom-
mended procedure is as follows: First, choose a tentative
time interval ~ which seems appropriate to the particular
problem. (A review of the examples prwented herein will
give an idea of a reasonable value.) Then compute a tenta-
tive value of the.dimensionlessdiffusion number k6/P. From
table I or II pick a d.itlmion number close to the one tenta-
tively computed. The memory coefficients M and inside
tomperatnre coefficients 8 given in the table for this diffusion
number are to be used, and they do not therefore have to
be computed. An adjustment in the value of 6 is made by
multiplying it by th’e ratio of the tabular value of k6/~
selected to the value of k6J? tentatively computed. Then
compute from equations (18) and (23) the value of @ and
the values of H; if the radiation is important, R must be
computed also (eq. (24)).’ The temperature history of the
heated-wall surface is then found from equations (25). If
the heatir)grate is being determined from a known tempera-
ture history, the values of H and R are not required. The
procedure for this case is discussed in the section entitled
‘(Example 6.”

The temperature formulas were derived with the assump-
tion that the initial wall temperature was zero in order to
avoid writ@ T–TO numerous times in the formula. The
simplest way to handle most problems is to subtract the
amount that the initial wall temperature is above zero from
both the wall and the adiabatic-wall temperatures. The
last step in the problem is to add this amount to the solution.

EQUATIONS FOR INSIDE SURFACE

If the temperature of the. unheated side of the wall is
required, equations (4o) are used. Except for the case of
the thermally thin wall, all equations were derived for con-
stant material properties For small changes in material
properties with temperature, it appeam reasonable to use
an average value of the properties for the temperature range
involved. For cases in which material properties vary, it
seems possible that a more accurate solution might be ob-
tained by varying the diffusion number or by varying the
step size to keep the ditlusion number constant; however,
any consideration of such a technique is beyond the scope
of this paper.

APPLICATIONOF METHODIN SPECIFICEX&NIPLES

The following illustrative examples were calculated before
table I was prepared. Therefore, the values of the coefi-
cients M and 0 were computed for the particular walls and
chosen time intervals ~ of the examples. AU values of M
and o used are fisted in table II, which may be considered
as being supplementary to table I.

EXAMPLE 1

Problem for example 1 (a).—A copper wall which is ~
inch (%4ft) thick is initially at a temperature of 0° l!’. One
surface is heated by a boundary layer while the other side
is insulated. The effective boundary-layer temperature T=.
is initially 0° F but increaseslinearly at the rate of 1,000° 1?
per second for 10 seconds. The heat-transfer coefficient
remains constant at h= 100 Btu/(hr) (sq ft) (°F). The con-
ductivity K and diffusivity k of copper are taken as

K=227(Btu)(ft)/(hr) (sq ftj (OF)

k=4.41 sq ft/hr

Find the temperature history of both wall surfaces.

Solution for example 1 (a) ,—The material properties are
usually given~in terms of the hour unit. However, since
fast heating conditions may be more easily understood in
terms of seconds, time is referred to in seconds and “is con-
verted to hours for use in the equations. For example, if

6=1 sec=& hr

then
k3_ (4.41)(24)’=0 ~056
p– 3600 .

By using this dimensionless dHusion number, the values of
IMin column 2 of the following table are obtained from table
II. The values of Tcmare fisted in column 4. The value of
Q is given by the equation

*_~_ 227
k (24) (4.41)

–2.1447 Btu/(sq ft) (°F)
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TABLE IL—VALUES OF 31 AiiD 8 IJ&ED IN ILLUSTRATIVE 13XAMPLES

\
k6/P

0.00980 0.08820 0.17640 0.36280 0.70660
m

M

O.09187272 0.27561816 0. 3S974D74 O.54911653 0.76160198
; –. 01576287 —. 04735497 - –. 07101815 –. 14414264
3 –. 02666~06 –. 08094552

–. 36266882
–. 13303643 –. 2%2?44390

4 –. 00947905.
~ –.33065113

—. 03275298 –. 06587129 –. 0B447364 –. 06648228
5 –. 00547837 –. 02295825 –. 04229223

–. 00369637
–.03966774 –.00990390

-.01799364 —.02736081 –.01666461 –.00173660
; –.00271361 –.01440766 –.01770513 –. 00693626 –.00030461
8 –.00210254 –.01168046 –.01145704 –.00290461 –.00006339

–.00169169 –.00931431 –.00741389’ –.00121624 –.00000936
1: –.00139980 –.00749250 –.00479755 –.00050929 –.00000164
11 –.00118389 –.00602714 –.00310461 –.00021326 –.00000029
12 –.00101926 –. 00484839 –.00200894 –.00008930 –.00000006
13 –.00089082 –.00390018 –.oo12f1999 –.00003739 –.00000001
14 –.00078882 –. 00313741 –.00084123 –.00001566 –.0000(.)000
15 –.00070668 —.00262382 –.00054436 –.00000656
16 –. 00063977 –.00203023 –.00035226 –.00000276
17 –.00058474 –.00163317 –.00022796 –.00000115
18 –.00053906 —.00131377 –.00014761 –.00000048

–.00060081 –. OO1O56W –.00009546 -.00000020
;; –.000404361 –.00085014 –.00006177 –.00000008

o

Loooooooo 0.99289947 0.?4364543 O.80477936 0.68038109
; –.00000012 –.09860808 –.27773216 –.44879472

–.00002053
–.47463267

–.16766415 –.23367386 –.20690977 –.08720676
2 –. 00028946 –.14162795 —.15250956 –.08666088 –.01529129
5 –. 00128807 –.11603872 –.09871526 –.03628441 –.00268126

–.00314564 –.09364233 –.06387947 –.015193S2 –.00047015
; –.00562973 –. 07637042 –.04133662 –.00636230 –. 00008244
s –.00802789 –.06063594 –.02674906 –.00266417

–.01036656 –.04877804
–.00001446

–.01730940 –.00111660 –.00000253
1: –.01237062 –.03923860 –.ol120097 –.00046716 –.00000044

—.01402862 –.03156463 –.00724818 –.00019662 –.00000008
E –.01633940 –.02539137 –.00469032 –.00008191 –.00000001
13 –.01633809 –.02042661 –.00303512 –.00003430 –.00000000
14 –.01706855 –. 01643084 –.00196404 –.00001436

—.01757475 –.01321741 —.00127093 –.00000601
:: –.01789689 –.01063245 –.00082243 –.00000262
17 –.01806993 –.00865303 –.00053219 –.00000105

–.01812340 –.00688029 –. 00Q34438 –.00000044
i: –.01808182 –.00553469 . –.00022285 –.00000018
20 –.01796529 –-00446226 –.00014421 –.00000008

The value of h=100 Btu/(hr)(sq ft)(”l?) is converted to I The @.kurface-t~perature curves of T and T, are
H= O.00800. Theuseof columns 2and4 in equations (25) shown in figure 1 (a). For comparison, therewdts calou-
gives the heated-wall tempemtnre in column 5. Using the
insideanhe-temperature formulas, equations (4o), and
thevrduesoftlin colunm6 gives the values of Ttincolunm 7.

1 2

I

3

Term ill Time,
number

o ------ 0
0.75160

; –.35266 :
3 –. 33065
4 –. 06648 :
6 –.00990 6

–. 00174
; –. 00030 ;
8 –.00005 8

–. 00001
1: –.00000 1:

4

T
“%’

1,00:
2,000
3,000
-4000
5,000
6,000
7,000
8,000
9.000

10;000

5 6 I 7

l—
-------
0.580382 !

—. 474632 21
–. 037~7 50
–.015291 91
–. 002681
–.000470 ;%
–. 000082 288
–. 000015 377
—. 000002 478
–.000000 591

lated by the theoretically exact formula (eq. (B1O) of ap-
pendixB) areshown. Thisformulais

where b represents the slope of the adiabatic-wall-tempera-
ture curve and aarepresents the positive roots of themxii-
iary equation

(44R)

Setting b=3,600,000 OF/hr and setting x=1 and x=O in
equation (44) result in the values for outside and insicle
temperatures plotted as circles and squares in figure 1,
The comparison shows that accurate results are obtained
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TZI=-”-J 8=1=C
— Outer surfoce Presmt method;
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(a) ~inch-thick waU.

Fmurm l.—E=mp1e 1. Temperature of copper-wall surfaces.
Adiabati@vmll temperature varies linearly from 0° to 10,000° in
10S,COnd,;h= 100 Btu/(hr) (sq ft) (“F).

by the present method, the maximum difference between
methods being about 10.

/

Problem for example 1 (b).-The conditio~ for example
1 (b) are the same as those for example 1 (a), except that
the copper wall is 3 inches thick, or 1=% foot.

Solution for example 1 @).-Siice this wall is so thick,
more highly transient conditions prevail throughout the
heating period. A value of 3 of Z second or 1/7200 how
was therefore used. With the same procedure as used be-
fore, the results of the present method are given as con-
tinuous lines in figure 1 (b), while the results from equation
(44) are given by the symbols. The agreement is evident.

EXAMPLE 2

Problem.—Example 2 illustrates the principal advantage
of the present method; that is, its capability of handling
arbitrary variations of T.. and h. 3Neitheris it necessary
to know a mathematical formulation for these variations.

A }<-inch copper wall which is initially at a temperature

400

(b)
— CMer surface Presmt method;
— — Inner sut+xa } 8=1/2 Sec

Time, SEC

(b) Wnch-thbk wall.

l?mum l.—Cono1uded.

of zero is aerodynamically heated on one side and insulated
on the other. The time histories of Tawand h are given at
J&secondintervals in the following table:

Time,
Seo

o

1::

i;
2.5
3.0

.2:
45
5.0

T
“%’ Lh, Btu&r) Time,

(Sq ft) ( F) Sec

36 5.5
41.4 6.0
45.0
48.6 M
52.2 7.5
6.58 &o

8.5
E: 9.0
66.6
68.4 18:
69.0

T Lh, Btu@r)
“.?$’ (Sqft)( F’)

5,391 68.4
5,356 66.6
5,255 63.9
5, 107 60.0
+ 831 55.8
$ 333& 52.2

48.6
2:769 450
1,658 41.4

297.5 36.0

The temperature history of both wall surfaces is to be
found.

Solution.—The heating conditions are severe and con-
tinuously transient, with the boundary-layer temperature
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rising and falling over 5,000° in 10 seconds. A computing
interval ~ smaller thrm that used in the first problem is
therefore used. Let 3=X second= 1/7200 hour. The re-
sulting wall-surfam-temperature curves are drawn in figure
2. The circles and squares give the surface temperatures
computed by a theoretically exact procedure. t%mparison
shows the present method to be accurate.

EXAMPLE 3

Problem.—Example 3 is the same as example 2 except
that the wall is 3 inches thick and the effective boundary-layer
temperatures are s~mhtly difTerent. The initial value of
Tawis O. The subsequent values of T.u are given @ 0.5-
second intervals by the following time series: Tam=1,365,
~J484,3J3~6,4,088,4,(309,4,915,5,094,5,227,5,296,5,325,

5,315,5,265,5,149,4,986,4,694,4,184,3,489,2,591,1,471,
100. Find the temperature history of both wall surfaces.

Solution (a) (thick-wall solution),-The value of 6 was
tken m ~ second. By following the procedure previously

360
— Outersurface Present rnethcd;
—— Inner surface } s=l/2sec

hxmm 2.—Ewmple 2. Temperatures of J$inoh copper wall heated
according to ass~gnedhietory of h and T...

presented, the wall-surface-temperature curves shown in
&-me 3 were obtained. ~~ain the symbols give the rcsult~
of exact theory.

It should be noted that the “exact solution” for emrnples
2 and 3 is not actually an alternate method of solution for
any practical problem but gives a solution to the particulrw
problems onIy. The “solution” was obtained by working
in reverse; that is, a heat flow was assumed and the corre-
sponding boundary-layer characteristics were computed,
A truly alternate method of solution is now considered,
however.

Solution (b) (infinitely thick-wall solution) .-Since the
thermal lag of a 3-inch copper wall is so great when subjected
to the rapid heating specitled by this problem, it appears
reasonable to obtain the heated-surface temperature by
assuming that the’wall is Mnitely thick. The memoly
coefficierits are the same for all ir&itely thick walls and are
given by equations (31). The same temperature formulas,
the same values of T~, and the same values of h me used
as before, but the values of H. are given by equation (29).
The results calculated by this method are listed rdong with
1

160
— Outer surface present mettwd;
—— inner’ewface 1 8=1/2sec

Time, SJX

FIGUEE 3.—Ewmple 3. Temperature of %lnch copper wall hoatod
according to assignedhiet.oryof h and Tg-.
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those from the thick-wall solution (rL).

Time,
sec k

T, “F, calculated by—

Thick-wafl hfinitely
solution thick-wall

solution

The consistency of the alternate methods for a thermallv
–d

thick wall is e~dent. The reason for the close agreement
may be found in figure 3, which shows ,that the unheated
surface of the 3-inch wall rose to only 14° l?.

EXAMPLE 4

Problem,—The most severe test of the present method
would occur if there were a large instantaneous increase of
Tam. While this condition could hardly happen in flight, it
might happen if a research model were .mddenly immersed
in a high-stagnation-temperature jet. Let a j4-inch copper
wnll, initially at a temperature of zero, be instantly subjected
to rm effective boundary-layer temperature of 5,000° F on
one surface while no heat transfer occurs on the other sur-

~ face. The heat-transfer coefficient is 100 Btu/(hr) (sq ft)
(“F). Solve for the temperature history of both wall SUP

fnces for 10 seconds.
Solution.—In this case not only is there a very high

transient-temperature condition initially but the instanta-
neous increase in Tamdoes not lend itself to approximation
by the unit triangle. The simplest procedure is to take
small steps for the first few seconds to minimize the errors
introduced. In order to help circumvent the difEculty of
ccdculation, rm excellent method of approximating the wall
surface temperature for the first or &t few small steps is to
use the following formula from page 109 of reference 5,
which gives the temperature on the surface of an infinitely
thick wall for a constant flow of heat at the surface:

(45)

The values of ISused were ~=j$ second for 2 seconds, then
6=?; second for 8 seconds. Since the use of an equation
bm.eclon an in6nite wall is permissible for a Kinch copper
wall for at least )( second, the values of T were computed by
ecluation (45) for the first two ,Wecond steps, then by the
usual equations. The results are presented in figure 4.
~Siucethe inside temperature T~ depends on the outside
temperature
ditliculty of
in obtaining

T and no~ directly OriT.;, there is no partictim
approximation in obtaining Ti. Accordingly,
T*, )&second steps were taken for 1 second to

T
Prewnt method;

— Outer swftxe

I

8=1/8 sw for 2 see;
8=1/2 x thereafter

=1/8 sec far I seq— _ Inner Surfm% 8.I/2 w therdfW

o
❑ \

~’e~ ~r~~ Exact the--’

I I 1 I I 1 I
1 I

SW I I I v I J, ,
? / I i I

100 / f- 1
)
/

/
/

0 2 4 6 8 10
Time, wc

FIGURE 4.—Emmple 4. Temperature of ~inch copper wall
after application of 5,000 “F jump in gas temperature. h= 100
Btu/O@ (sq ft.)(oF).

define the highly transient part of the curve, then J&second
steps for the remaining 9 seconds.

A theoretiwdly exact solution to this problem was obtained
by equation (B7) of appendix B. The results of applying
this equation are given by the symbols in figure 4,which
shows that agreement was obtained.

EXAMPLE 5

Problem.-A jl~inch Inconel wail is heated by a high-
temperature jet. If T.W=5,0000 F and h=50 Btu/(hr) (sq
ft) (“F), determine the skin-temperature history for 15 sec-
onds. Neglect radiation.

Solution.—The heat capacity of a ~Finch Inconel wall was
assumed to be f3=0.3229 Btu/(sq ft) (“l?). The example -was
worked three times with values of ~ of 1, 2, and 5 seconds to
show how sensitive the “thin wall” formula is to the time
interval. Substituting the given constants into equation
(34) yielded the results given by the symbols in figure 5.
For this example the exact theory is shown by the solid line.
Etidently, large time intervals are permissible with this
formula.
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FIQURZ 5.—Esample 5. Temperature of~{~inch Inwnel ‘-WafL
2’.== 5,000 oF; h=so Btu/(hr) (sq ft) (“F).

EXAMPLE 6

Problem for example 6 (a).—The temperature history of
the hetded surface of a )&inch copper wall initially at zero
temperature is given by the following time series in which
the temperature= are for %econd intervals: T=4.8, 13.2,
25.2, 40.2, 58.2, 77.9, 99.4, 122.6, 146.3, 169.8,193.0, 214.8,
235.3, 253.2, 268.8, 281.5, 290.8, 296.7, 298.0, 297.5. The
inside surface is insulated. Determine the history of heat
flow into the heated surface from the given surface-tempera-
ture history.

Solution for example 6 (a).—If the time interval used is
sufficiently smalI, the average rate of heat flow over the
interval is a good approximation to the rate of heat flow
at, the center of the interval. Equation (42), which gives
the average rate of heat flow over the interval ending at
t=mJ, may be used. For a value of J of M second, the
values of Ji are given in table Il. Substituting in equation

(42) giwE the rate of heat flow plottsd as circles in figure 6.

The solid curve gives the theoretically exact instantaneous

rate of heat flow for comparison. me results from equation

(42) are seen to be precise, The system yielding instan-
taneous heat flow, mentioned previously, would seem to be

a natural one for the present problem; however, tb e results

obtained by that, system were found to be inferior to those

presented.

Problem for example 6 (b).—The corresponding inside-

surfrice-t.emperature history of the same wall is given by

““m~~Computed from Outside-surfoce temperotwes
Computed from Mde-surfoc-e tempemtures

o 2 4 6 8 10
Time, SIX

FIQUIUI6.—Ewmple 6. Rate of heat flow into heated (outcm) tJur-
frice of )&inch copper wall computed from ternpemture hkbmy of
outer surface and from temperature history of inner surfaca

the following time series in which the temperatures am for
%-second intervals: Tf=0.8, 4.4, 11.7, 22.4, 36.0, 62,6,
71.6, 92.3, 114.2, 137.4, 160.6; 183.7, 205.4, 226,4, 245.3,
261.6, 275,2, 285.6, 292.4, 296.3. Determine the histoly
of heat flow into tie outer surface by using only the given
inside temperatures.

Solution for example 6 (b).-Equations (43) may be used
to determine the outside-surface-temperature history from
the inside-temperature history. Then, the rate of hewt
flow at any time is determined as in the solution for a..amplo
6 (a). The factor l/(1–&) in equations (43) may bo
thought of as a magnification factor. Large values of this
factor tend to cause an instability in the computed tempera-
tures. In this example, if 6is taken as ~ second or 1/7200 hour,
the value of k6/1~is 0.3528, 01is 0.80478, and the magniflcn-
tion factor i9 5.1. On substitution in equations (43), an
oscillation of period 26 buiIds up in the vnluea of T, vwy
slowly at that and to either side of the correct answer as a
mean value, but in a divergent manner so that by 4 soconcls
the amplitude is 6°. For a value of ~ of 1 second, the value
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of k8/Fis 0.7056, 01is 0.68038, and the m-cation factor
is 2,4. In this instance, an oscillation in T of period 26 and
maximum amplitude of 1.5° occurred. Substituting these
values of T, without faking, into equation (42) gives the
results shown by the square symbols in figure 6. If a larger
value of 6 were used, the oscillation would be damped out
but the accuracy would sufler because of a lack of definition
of the rapidly ~arying heating rate. Tb e particular caae
demonstrated is therefore a marginal one for the determina-
tion of heat flow from the temperatures of the tilde surface.
The instability is found to disappear for thermally thinner
wrdls and convemely to increase rapidly for thicker walls.

CONCLUDING REMARKS

Formulas to facilitate the determination of the transient
surface temperatures of thick walls from an arbitrary
variation of adiabatic-wall temperature and heabtrmifer
coefficient ~ave been developed. Formulas to facilitate the
determination of heat flow horn an arbitrary variation of
wall surface temperature were also obtained. The numerical
applications given demonstrate a high deggee of accuracy
for the present method. -

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD,VA.,June 18, 1967.
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APPENDIX

REVIEW OF SUPERPOSITION
-.

TIME SERIES

A time series may be de~ed as a series of numbers or
quantities which represent. the values of a function of time
at successive equal intervals of time. According to the
notation of Tustin (ref. 3), each quantity is separated from
the others by a comma since the values corresponding to
different times are not added together. The quantity at
zero time is zero. The first quanti~ recorded represents
the value of the function at the end of the first time interval.
The time interval used is arbitrary and its size is selected
to obtain the accuracy required in the solution of a specific
problem. The symbol for the time interval is & Thus, the
series y=yl, Y2, Y3, - . . ym represents the values of the

function y at the times ~, 26, 36, . . . mti

THE UNIT TRIANGLE

A unit triangle is an isosceles triangle which has an altitude
of unit magnitude and a base of 28, or two time intervals.
Since 6 is an arbitrary time interval, the unit triangle is
accordingly arbitrary. A plot of a unit triangle centered
at t= 6 isshown in sketch 1, where y represents magnitude

f

Sketch 1.

or altitude. The slopes of the sides of the triangle depend
on the value of 6 and are equal to + l/& Three lines maybe
superimposed to represent the unit triangle. The equations
of the three lines which may be added to represent the unit
triangle are y= (1/~)t, y=– (2/6) (t–~), and y= (1/~)(t–26).
Although the triangle terminates at t=26, the values of tin

the equations for y can go on to intity since the values of y
add to Obeyond t=2&

892

A

mD m SER~S

THE FUNCTION CORRESPONDING TO A REFERENCE LINE

Let l%,t) be the solution to a boundary-value problem
speciiied ‘by a linear partial differential equntion ;nd the
linear boundary condition y= (1/6)t, where y is the value of
For one of its derivatives or integrals at some fi..ed vnlue of
x. Because of the linearity of the problem, the magnitude
of the solution is directly proportional to the magnitudo of
the slope 1/6 of the boundary condition. For example, if
Y= (2/@t, the corr=pond@ function representing the solu-
tion is 2F(x,t). Again, if y= —(2/8)t, the corresponding
function is –2F(z,t). The slope of the line ~= (1/6)t can
thus be used as a reference magnitude. This slope is the
same as that of the left side of the unit triangle.

The value of tin F(qt) is always identical with the value
of tin the boundary condition ~= (1/8)t. Thus, if the origin
is shifted so that y= (1/6)(t—26), then the corresponding
function is F(z,t—23). X%rticular solutions of IL linqw

difhrential equation can alwa~ be added in linear combi-

nations to satisfy more general bounc~ary conditions. If a

and b are constants, and ‘aF(z,t) corresponds to the bound-
ary condition yl= (a/6)t,and bF(z,t–b) corresponds to
YZ= (6/0 (t—0, then the function corresponding to the sum of
the two lines y=yl+y~ is F=aF(z,t) + bF(z,t—6). Let an
additional property of F, as well as of y, be that it assumes
the value Ofor any time less than O. The rrmge of tirm of
interest is therefore from Oto cu.

THEPUN~ON CORRESPONDING TO A TRIANGLE

Now consider a function FA(t)dependent on the lines of
the unit triangle in sketch 1 for its value just M l’(t) is
related to the liue y= (1/6)t. In consideration of the three
lines by which the”unit triangle maybe replaced, y= (1/6)tj
y= —(2/6) (t—~), and y= (1/8) (t—2~), the three correspond-
ing solutions or functions of time are l’(t),—2F(t—ti),and
F(t—26). Because of the additive nature of solutions, the
solution corresponding to the complete triangle may bo
defined as the sum of the solutions for the lines which com-
pose it:

F*(t) =F(t)–2F(t– 6)+ F(t–26) (Al)

In equation (Al) each term has a value of zero for negativo
m.lues of its argument.

REPRJR3ENTATION oF A GENERAL CURVE BY TRIANGLE9

The curve A–B in sketch 2 (a) is any arbitrary continuous
function & the plane y,twhich can be faired through its
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ordinate values O, VI, yj, and 93. The curve may be well
~pproximated by a series of chords such as a, b, and c if a
suitable apncing 6 is used.

Y
3

2

I

VI

YI

A
o 8 28 38 /

L
1

Y

3

2

[

(b)

~
,

0 8 28

\

\
h

38 f

(a) Curve A-B.

(b) Synthesis of mrve A-B.

Sketoh 2.

Draw the lines d, e, f, g, and h of sketch 2 (b) to form the
isosceles triangles with sides a and d, e and f, and g and h.
,Since the sum of two straight lines is a straight line, it is
clear that, if the letters which designated the lines are now
used to designate the equation of the line, then d+ e=b and
f+g=c. Of course, the line a is the tit half of the first
triangle as well as the fit chord of the curve A-B. In
designating the ordinates yl, Y2,y3, . . . y=, the altitudes of
threo triangles whose sides add up to the chords of the curve
A-B are simultaneously designated. The ordinate series
‘Yl,Y%Y3, . . . Y., with spacing 6, is a time~eries approxi-

mation of the curve A–B. In this case, as well as elsewhere
in this report, each ordinate of & series is understood to
represent the altitude of an ‘isosceles triangle with a base
width of 26.

AEBITRABY CONTROL FUNCTIONS

Suppose that the cutvo A-B, or y(t),is to serve as an
arbitrary reference or control function for a corresponding
function F.(t). It is desired to determine FJt) in terms of
functions corresponding to unit triangles, such as F*(t),
given by equation (Al). The function TA(t) is a function
corresponding to a unit triangle centered at t=& If F~(t) is
multiplied by yl, there results the function corresponding to
the triangle with sides a and d of sketch 2 (b). By super-
position, the function corresponding to the three triangles
centered at ~, 28, and 36 is

Yx(t)=YI~A(t)+y2~A(t–~) +YJth(~-20 (A2)

I Then, since the three triangles add up to the chords of the
curve A–B, this is the function, in ordinary algebraic form..-
correspon&g exactly to the chords of the general reference

curve y=yl, yl, Ya, . . . ym. In order to put equation (J&2)

in time-seriw form, let ~A (t) =q ~, ~, . . . %, with spacing
& Substituting in (A2) and placing terms for the same time
in columns and adding yield

ylF*(t) =yIal, Y1% Yl% . . .

@.(t-6) = O, Y@l) Y2a2, . . -

y#A(t–20= 0, 0, Y% . - -

F.(t) =iw, (wh+whh (Yla3+Yfi+w3uJ, . . . (A3)

The result shown by equation (A3) is obviously that which
is obtained by formal ,algebraic multiplication of al, a2,%, . . .
‘oY Y1,YZ,Y3, . . . as follows:

~A(t)= al, (k, a3, . . .
y(t)= yl, !/2, y~, . . .

ylal, Y1% Yl%, - . -

YS%, y2a2, . . .

WI, . . .

Fy(t)=y,a,, (?4,a2+W?al),(YIG+YA+YWU), . . - (A4)

Therefore,
~w(t).=[~A(t)~[Y(~)s] (A.5)

where the subscript s denotes time-seri= form.

Equation (A5) states a simple theorem which vm.s first
given in reference 3. It was developed with y(t) having a
value of Oat t=O and ~A(t) also having a value of Oat t=O.
If either or both of the seria had values other than O at
t=O, multiplication as in equation (A5) would not be suf%-
cient to obtain FV.
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SUMMARY OF ANALYTICAL

CONSTANT FLUID TEMPERATURES

APPENDIX B

TEMPERATURE FORMULAS FOR THICK WALLS

Consider an infinite wall of thickness 1and an initial tem-
perature of zero. (See sketch 3.) Let the wall be suddenly

T

;
I
I
Iqh
I
I
I
I
I

T(x, t)/

1/1 Imtlol ternperoture ❑ O

I
Im

I
l’-
1
I
I“.

0 1 x

Sketch 3.

contacted at the face x=1 by a fluid of temperature ~~awhile
the face at z=O remains exposed to a fluid of zefo tempera-
ture. Let the heat-transfer coefficient at the face x=1 have
the value h and the heat-transfer coefficient at the face z= O
have the value ql. Let the wall have uniform physical prop-
ertieswhich are invariant with time.

The flow of beat within the wall is governed by Fourier’s
‘equation for transient heat flow, which states that the rate
of increase of temperature is proportional to the rate of
change of temperature gradient:

The constant of proportionality, called the dMusion coeffi-
cient, is equal to the ratio of the conductivity of the material
to the heat capacity ‘asrepresented by the product of specitic
heat and weight density as follows:

k=$

The boundary equation for the wall at x=1 is obtained by
equating the heat transfer between the fluid at temperature
Tamand the wall at temperature T to the rate of heat transfer
in the wall at x=1:

r’)h(Taw–Tz.,)=K &
2=r

A similarboundary equation is written for x=O:

(B2)

(133)

The initial condition specifies that the initial temperature of
the wall is zero:

‘ (T)t.o=o (B4)

The simultaneous solution of partial ditl’erentialequations @l) to 034) by operational methods yields the infinite amiss:

(B6)

The parameters % are angles which are the positive roots of
the equation

tan a.=
aJl+?Jl)

an$–v g
(B5a)

TVJOdimensionless numbers of physical significance are
present in equation (B5): the Mlusion number ktl~, and the
conductance or Nusselt number id/K. The fit term of

894

equation (I%) gives the.steady-state solution or equilibrium
condition.
/ SPECIAL CASE pi)

The special case of a plate that is heated by convection
on one face while the heat transfer on the other face is so
small as to be negligible is important. Setting the heat-
transfer coefficient at the unheated face equal to zero cor-
responds to making the assumption that the plate is per-
fectly insulated at that face. If the plate is perfectly in-
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suIated at the face x= O, substitute q=O in equations
036) and (B5a) and utilize the following relation to eliminate
sin an,

@6)

where an represents the positive roots of the equation.
These substitutions yield the follofiing expression for tem-
perature:

Equations (B6) and (B7) maybe found on page 100 of ref-
erence 1.

SPECIAL CASE PO AND h=m

The special case in which q=O and h= ~ corresponds
physically to perfect insulation on one face and i lmown
initial temperature on the other face. This ease is developed
by setting h= co in equations (B6) and (B7). Equation
(B6) becomes

% tan ~= m

tan %= w

or, since G msurncs the sequence ~) $) ~, and so forth,

~= (2n—1);

Equation (B7) reduces to

Equation (B8) maybe found in standard references (ref. 5,
page 196, problem 6, for example). In this equation, T~
is the step in wall-surface temperature used in place of
Tau.

VARIABLE FLUID TEMPERATURE

ARBITRARY VARIATION OF T==

Equation (B7) is an exact solution of a thick-wall bound-
ary-layer heating problem which is suitable for checking

the accuracy of the present method of computing wall
temperatures. Another method, which is more general,
can be obtained by letting the adiabatic-wall temperature
vary in a known manner, T.W=F(t). Let V(z,t) be the
variation of wall temperature due to a 10 step in adiabatic-
wall temperature. If the initial wall temperature is zero, the
wdl temperature is given by Duhamel’s formula as

J
t.

T(z, t) = F(T) v(z, t–,)d, (m)
o

where F is the derivative of F with respect to t and 7 is a
dummy time variable.

LINEAR VARIA~ON OF Tcw

In the linear variation of T.m,T..=?t, or, in the notation
of Duhamel’s formula, F=bt and F=b. Substituting T
from equation (B7), with Taw=l, into equation (B9) and
performing the integration give

Equation (B6) is used to obtain q.

LINEAR VARIATION OF WALL SURFACE TEMPERATuRE

One of the fundamental equations on which is based the
time-cries development of surface-temperature equations is
one expressing the transient wall temperature due to an in-
orease of 10 in temperature of one wall surfam during each
interval of time & The assumptions are made that the
initial temperature is zero and that one wall is insulated.
From these considerations, F in Duhamel’s formula is
F=t/6 and ~= l/& Substituting this derivative and T from
equation (B8), with TS= 1,into equation (339) and perform-
ing the integration give the following equation for the tem-
perature at any plane due to a surface temperature rise of 1°
per unit of time 3:

(Ml)

The heat flow at any point within the wall due to 1° rise of
-Al surface temperature in the time 6 is obtained by multi-
plying the conductivity by the temperature gradient. Dif-
ferentiating equation @n) with respect to z and multiplying
by Kyield

In order to eliminate k in the coefficient, substitute for k its
definition k= K/pc. Then lK/k6=pcl/& The product pcl
is the heat capacity of the wall per unit area per degree and
is represented by the symbol Q. In order to obtain the heat
flow at the heated surface, where the heat balance is to be
made, let z=l. Hence, the instantaneous heat flow due to a
uniformly increasing surface temperature of 10 per unit of
time 6is simplifiedto

(3312)
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In order to find the average flow of heat over the interval
6, equation (B12) is integrated with respect to time between
the limits (t—~) and t. This integration gives the tatal heat
flow through the surface during the interval. On dividing by
~, the nverage rate of flow for the interval is obtained. The
result is

(B13)

The summation S, ~2n~1), is a constant with the value $/8.

In working with time series only titegral increments of time
(8, 2a, 38, . . . ma) are used. In equation (B13), therefore,
tmay have any value ma, where m is an integer. For con-
venience, and to systematize rwults, the following identitiw
are defined:

(B14)

@lb)

for the time interval ending at t=m& Equation @16) is
used in forming the heat bahume at the hented wall surface
in the derivation of wall temperature formulas.



APPENDIX c

ANALYTICAL TEMPERATURE DISTRIBUTION

Equations (40) are the formulas most convenient for
determining the temperature of the inside surface or of any
plane within the surface. For the determhation of the
temperature of planes within the wall, equations (36a) are
ordinarily evaluated numerically to obtain o for a given kt/1’
and x/1. However, it may be necessary to obtain the tem-
perature distribution through the wall at some instant of

time due to an arbitrary surface-temperature history in a
form that is analytical with respect to x and that can be
d.iihrentiated or integrated with respect to z (for example,
in the derivation of a general formula for the thermal stress
distribution or maximum stress). This temperature dis-
tribution is obtained by substituting equations (36a) into
equations (39), substituting equations (39) into equations
(4o), and collecting terms. The results are

16 lZ
2

{

[ 1[
(–l)n-~ Cos (2n-1) ; ;

Z,S=Z-~fiB=l (2n–1)3 1 1T,–T,+ (2T1–TJe-@-1)’ ‘;–T1e-2&-1)’;~

‘{

[
‘}[

(–l)”-’ Cos (2n–1) ; ;
T,,,=T,-~~~l

(2n–1)3
T3–T,+ (– Ts+2Tq–T1)e–@-1)’ +;+

J

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 1% m

{

[ 1
(–1)”-1 Cos (2n–1) ; f

T,,.= T.—— —??’ kaZI (2n–l)s 1[T.–T--,+ (– Tm+2Tm_,–Ta.2)e ‘(h-l)’;;+

(–T~_,+2T~_~–Tn_,)e ‘2(m-1)’s% + . . .
*3~

7
+ (2T,–TJe ‘(~-l) @-l) ’TZ–T,e ‘m(h-’)’$Z

Note tlmt TL,, Tt,u T,,,, md T~~ mn be comw~d ~de-
pendently. The use of these equations involves considerable

labor, however, because all terms in the summation must be
summed in unison:
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